

Cybersecurity for Energy Delivery Systems 2010 Peer Review

Alexandria, VA ♦ July 20-22, 2010

Gordon H. Rueff
Idaho National Laboratory (INL)
Sophia Proof of Concept
INL/CON-10-19389

Summary Slide: Sophia Proof of Concept

Major Successes:

- Deployed at 2 utilities.
- Additional use cases found during development/deployment.
- Deployed at 1 vender.
- Saved 1 man-month of time.

Roadmap Goals:

- Measure and Assess Security Posture
 - (long) Real-time security state monitoring for new and legacy systems commercially available
 - (end) Energy asset owners are able to perform fully automated security state monitoring of their control system networks with real-time remediation

Schedule:

2009.12.10 - Deployed

2010.05.25 - Final Report

• Level of Effort: \$200K

• Funds Remaining: \$0K

Performers: INL

 Partners: Idaho Falls Power, Austin Energy, ABB

Summary Slide: Sophia Proof of Concept

- Consistent training materials on cyber and physical security for control systems widely available within the energy sector
 - (mid) Secure connectivity between business systems and control systems with corporate network
- Sustain Security Improvements

daho National Laboratory

- (near) Major info protection and sharing issues resolved between the U.S. government and industry
- (mid) Compelling, evidence-based business case for investment in control system security
- (end) Energy asset owners and operators are working collaboratively with government and sector stakeholders to accelerate security advances

Schedule:

2009.12.10 - Deployed

2010.05.25 - Final Report

• Level of Effort: \$200K

• Funds Remaining: \$0K

Performers: INL

 Partners: Idaho Falls Power, Austin Energy, ABB

Summary Slide: Sophia Proof of Concept

■ Roadmap Challenges:

- Limited ability to measure and assess cyber security posture
- Growing risks from increasingly interconnected systems
- Poorly designed connections of control systems and business networks
- Performance may degrade from security upgrades to legacy systems
- Increasingly sophisticated hacker tools
- Poor industry-government coordination
- Poor understanding of cyber risks
- Weak business case for cyber security investments

Schedule:

2009.12.10 - Deployed

2010.05.25 - Final Report

• Level of Effort: \$200K

• Funds Remaining: \$0K

Performers: INL

 Partners: Idaho Falls Power, Austin Energy, ABB

Technical Approach and Feasibility

Approach

- Develop "best guess" using "tribal knowledge"
- Vet "best guess" against target audience
- Plan finished tool based on tool success and feedback from audience

Metrics for Success

 As a proof of concept, success is defined by whether the concept is proved useful. The metric for this is the response from industry.

Technical Approach and Feasibility

Challenges to Success

- Refine Sophia
 - Choose features wisely
 - Keep it simple

Technical Achievements to Date

- Deployed at 2 asset owners
- Deployed at 1 vendor
- Feedback and lessons learned

Collaboration/Technology Transfer

• Plans to gain industry input

- Industry needs to direct the path of Sophia into a useful tool.
- Industry involvement was planned into the proof of concept by seeking industry concept testers before the proof of concept was developed.
- Industry network environments are very different between sites.
 Finding representative networks is not easy.

Plans to transfer technology/knowledge to end user

- Asset owner networks are the targeted use case for Sophia.
- INL plans to continually respond to feedback from Sophia industry partners until the end of development.
- Sophia will be licensed through third party support companies that will provide end user support.

Next Steps

Current State

The proof of concept is finished.

Future Work

- Develop Beta Sophia Tool
- Continual Beta Testing During Development
- License Beta Software Through Third Party

Concept Design

Sophia Records

Sophia Records Defined

Record Multiplicity

Change Detection

- Pulls key Information from other tools
 - Monitors Network Changes
 - New Hosts
 - New Communication Paths

daho National Laboratory

- Alerts on deviation from base fingerprint
- Management Interface to alter base fingerprint

Tool Management Console

Example: Adding a simple backend database

Feedback

Conclusions

- · Pro and Cons
 - Cons
 - · Memory Based for speed, but no persistent data
 - Requires a flat, sniffable network
 - · Assumes the control system is working right
 - Ignores sessions that fail (e.g. daemon not running)
 - Pro
 - Ease of use Start and Forget
 - · Logical reporting structure
 - · Really cool diagrams
 - · Extending your productivity Cost saving

Information Technology & Telecommunications

Beta Design

Questions?

Gordon H. Rueff

Gordon.Rueff@inl.gov

- Office: (208) 526-0311

- Cell: (208) 360-7440

Jared Verba

Jared.Verba@inl.gov

- Office: (208) 526-6120

- Cell: (208) 521-9939

Dave Kuipers

– <u>David.Kuipers@inl.gov</u>

- Office: (208) 526-4038

- Cell: (208) 360-6456

Jim Davidson

James.Davidson@inl.gov

- Office: (208) 526-0422

- Cell: (208) 520-2806

